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EASYPAP aims at providing students with an easy-to-use programming environment to learn
parallel programming. The idea is to parallelize sequential computations on 2D matrices (which
are images, most of the time) over multicore and GPU platforms. At each iteration, the current
matrix can be displayed, allowing to visually check the correctness of the computation method.
Multiple variants can easily been developed (e.g. sequential, tiled, omp_for, omp_task) and com-
pared.

Most of the parameters can be specified as command line arguments, which facilitates automa-
tion of experiments through scripts:

• size of the 2D matrices or image file to be allocated/loaded;

• kernel to use (e.g. blur, pixelize, invert, . . . );

• variant to use (e.g. seq, omp, omp_task, pthread, mpi, ocl, . . . );

• maximum number of iterations to perform;

• interactive mode / performance mode;

• monitoring mode;

• and much more!

The goal of this document is to provide a Quick Start Guide to the EASYPAP user, using a
step-by-step discovery of the main features and most useful options of the EASYPAP utilities.
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1 Before you start

This section describes how to compile the EASYPAP programming environment. For instructions
about installing EASYPAP and the packages it depends on, please refer to Section 8. In particular,
Section 8.5 shows how to customize the Makefile by enabling/disabling various functionalities.

1.1 Compiling EASYPAP

Go into your EASYPAP main directory (e.g. ${HOME}/Devel/easypap) and simply type:

make
make -C traces

This will compile the EASYPAP programming environment as well as the trace visualization
utility (see Section 3.2).

1.2 Enabling bash completion (optional)

If you are using the Bourne Again Shell (bash), you will probably want to enable automatic bash
completion to save time when typing commands. To do so, just source the following file in your
terminal:

. script/easypap-completion.bash

You should now be able to trigger auto-completion of the EASYPAP run script arguments by
pressing the key. For instance:

[my-machine] ./run --kernel
mandel none spin

To avoid repeating this process each time you open a new terminal, you may
add the following lines to your ${HOME}/.bashrc file:

EASYPAPDIR=${HOME}/Devel/easypap
. ${EASYPAPDIR}/script/easypap-completion.bash

Tip

2 Running EASYPAP

To check if EASYPAP was correctly installed and built, you can invoke the “run” script without
passing any argument:

./run

A window should pop up, displaying a black uniform picture. This is OK: by default, EASY-
PAP allocates an image of size 1024×1024 where each pixel has the black color (i.e. (unsigned)0).
We talk about colors in more details later. Just press esc to quit.
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2.1 Our first kernel

In EASYPAP, functions performing computations on images are called kernels. EASYPAP comes
with a set of predefined kernels, and new kernels can easily be added to the pool. CPU implemen-
tations of kernels are stored in the kernel/c subdirectory.

Open the spin.c source file and observe the implementation of the spin_compute_seq
function. The code is showed in Figure 1. Its name reveals that it implements the “seq” variant of
the “spin” kernel.

1 // Simple sequential version (seq)
2 // Suggested cmdline: ./run --size 1024 --kernel spin --variant seq --debug u
3 //
4 unsigned spin_compute_seq (unsigned nb_iter)
5 {
6 for (unsigned it = 1; it <= nb_iter; it++) {
7

8 for (int i = 0; i < DIM; i++)
9 for (int j = 0; j < DIM; j++)

10 cur_img (i, j) = compute_color (i, j);
11

12 rotate (); // Slightly increase the base angle
13 }
14

15 return 0;
16 }

Figure 1: Sequential version of kernel spin (from kernel/c/spin.c)

The outer loop (line 6) performs nb_iter iterations in a row. In interactive mode1, this vari-
able is assigned the value 1 by default, so that the screen is refreshed after each iteration. In
performance mode2, no display is involved and the nb_iter variable is set to the total number
of iterations requested by the user.

Lines 8–10 illustrate how the contents of the image are accessed during an iteration. For the
sake of simplicity, images are squares shape of size DIM × DIM. The pixels of the image can be
accessed through the cur_img (row, column) macro.

In this example, the compute_color function computes the color of each pixel using its polar
coordinate in the image. To execute the variant illustrated in Figure 1, simply run:

./run --kernel spin --variant seq

Or use the abbreviated3 version:

./run -k spin -v seq

If no variant is specified, the seq one is used by default. So we could even just run:

./run -k spin

1Interactive mode is further explored in Section 2.4, page 7
2Performance mode is further discussed in Section 2.6, page 8
3The comprehensive list of options can be obtained by running ./run --help
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Figure 2 illustrates the output of EASYPAP when running the spin kernel. Note that both the
kernel name and the variant name appear in the window’s title bar.

Figure 2: Snapshot captured during the execution of the spin kernel.

2.2 Changing the size of images

By default, when no specific image size is specified and no image is loaded (see 2.7), images are
defined as matrices of 1024× 1024 pixels (i.e. DIM = 1024).

Dimensions of images can be changed using the --size option. For instance, here is how to
run the spin kernel over an image of size 2048× 2048:

./run --size 2048 --kernel spin

Even though the image is now much bigger, it is resized when displayed on the
screen to fit the dimensions of the graphical window. As a consequence, it will
not necessary make any difference on the screen. However, the computation
time will surely be significantly different!

Warning

2.3 Implementing multiple variants

Multiple variants of a given kernel are usually coded in the same file. As a follow-up of our pre-
vious example, kernel/c/spin.c contains a second variant of our spin kernel. It is a straight-
forward OpenMP version designed as an incremental evolution of the sequential variant: a single
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#pragma omp parallel for clause was inserted before the for loop iterating over lines (see
Figure 3, line 9). This variant is named “omp”, so the full function name is spin_compute_omp.

1 ///////////////////////////// Simple OpenMP version (omp)
2 // Suggested cmdline:
3 // OMP_NUM_THREADS=4 ./run --kernel spin --variant omp
4 //
5 unsigned spin_compute_omp (unsigned nb_iter)
6 {
7 for (unsigned it = 1; it <= nb_iter; it++) {
8

9 #pragma omp parallel for
10 for (int i = 0; i < DIM; i++)
11 for (int j = 0; j < DIM; j++)
12 cur_img (i, j) = compute_color (i, j);
13

14 rotate (); // Slightly increase the base angle
15 }
16

17 return 0;
18 }

Figure 3: OpenMP parallel version of kernel spin

Let us try this new variant:

./run --kernel spin --variant omp

Did you feel it ran faster than the seq one? In the general case, it may not be obvious to observe
a difference, because the graphical display adds a significant overhead to the kernel computation.
This overhead comes from the transfer of all pixels to the graphical card, from the screen vertical
sync, etc. In some situations, this overhead may be larger than the duration of one single iteration.

In Section 2.5, we discuss how to decrease this overhead. In Section 2.6, we detail how to get
entirely rid of this overhead and achieve accurate performance measurements.

2.4 Interactive mode

By default, EASYPAP runs in interactive mode and updates the main graphical window to reflect
the contents of the current image after each iteration. In this mode, the user can interact with
EASYPAP through the keyboard to trigger various actions such as pausing the application, dis-
playing the current iteraction number, or exiting the program. All available controls are listed in
Table 1, page 8.

2.5 Setting the refresh rate

As previouly mentioned, updates the graphical window after each iteration by default. You can
use the --refresh-rate option to specify the number of iterations between two screen updates,
that is, the number of iterations in a row performed by kernel variants. Hence, the following
command line will refresh the graphical window every five iterations:
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Key Action
Space enter/leave the pause state
and change the refrech rate (detailed in Section 2.5)

i toggle display of iteration number On/Off
h toggle “heat map” mode (only in monitoring mode, see Section 3.1)

esc or q quit EASYPAP

Table 1: Interacting with the EASYPAP main window.

./run --kernel spin --variant omp --refresh-rate 5

The perceived speed of the computation should be noticeably faster.
Note that the refresh rate can also be interactively adjusted by pressing and keys dur-

ing execution. Beware that the refresh rate increases exponentially in this case, so do not press the
key too many times!

2.6 Performance mode

The interactive mode is useful to visually check if a given kernel behaves correctly. When it comes
to benchmarking and comparing multiple variants however, we need a way to completely elim-
inate the overhead of graphical refresh. This is precisely what the --no-display (or -n) op-
tion is intended for: EASYPAP runs silently and reports the overall wall clock time after comple-
tion of the requested number of iterations. The number of iterations can be specified with the
--iterations (or -i) option.

Here is how to perfom 100 iterations within the spin kernel:

[my-machine] ./run -k spin -v seq --no-display --iterations 100
Using kernel [spin], variant [seq]
Computation completed after 100 iterations
3087.406

The last line of output displays the completion time in milliseconds4.
Let us see what happens with the omp variant:

[my-machine] ./run -k spin -v omp --no-display --iterations 100
Using kernel [spin], variant [omp]
Computation completed after 100 iterations
402.701

In this case, the OpenMP variant achieves a speedup of 3087
403 ≈ 7.68.

2.7 Loading images

The spin kernel belongs to a family of kernels which have no input data: they generate an output
image out of nothing. The mandel kernel, which draws the Mandelbrot set, is another member of

4By default, completion time is also reported in the data/perf/data.csv file, together with all the run parame-
ters.
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the same family (see kernels/c/mandel.c).
Other kernels, such as invert, expect an image as an input. One simple way to provide a

kernel with an image is to load it from a file, using the --load-image (or -l) option:

./run --load-image images/shibuya.png -k invert -i 1

Notice that we perform only one iteration to avoid the inconvenience of screen blinking, which
would inevitably occur with the invert kernel that continuously switches from positive to neg-
ative images. . .

Another way of avoid screen blinking is to force the program to pause between iterations:

./run -l images/shibuya.png -k invert --pause

Simply press Space to step over the next iteration. Pauses always take place between
iterations. Note that any execution (i.e. even when the --pause flag was not set) can be paused
or resumed at any time by pressing Space .

2.8 Drawing images

Another way to start with an existing image is to draw it using a preamble function. Before
executing a kernel, EASYPAP checks if a “draw” function has been defined. If so, it is called
before the first iteration. The function must either be named <kernel>_draw, or <kernel>_
draw_<variant>. EASYPAP first looks for the variant-specific one and, if not found, looks for
the general one.

To illustrate the use of such a drawing hook, let us add a function in invert.c that will draw
a pink diagonal line before any kernel starts:

1 // If defined, the draw function is called before the computation starts.
2 // This is typically the place where a kernel can modify the pixels of the
3 // original image.
4 void invert_draw (char *param)
5 {
6 // draw a pink diagonal line
7 for (int i = 0; i < DIM; i++)
8 cur_img (i, i) = 0xFF00FFFF;
9 }

Note that the draw function is called after an image has been potentially loaded from the disk
(cf Section 2.7).

If not NULL, param contains the argument specified on the command line using the --arg
option. Please explore the source file of the life kernel (i.e. kernel/c/life.c) to observe how
this parameter can be used to select a specific drawing function among a set of predefined ones:

./run --kernel life --arg "random"

2.9 Stencil codes

In many situations, computations must be synchronous with respect to iterations: data cannot
be safely written until all read operations have completed. In such cases, using two images can
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help a lot: during iteration 1, the first image is read and the second is modified, then the roles are
swapped before iteration 2 starts, and so on. . . Stencil codes are typically programmed this way
(see for instance the blur kernel).

Actually, EASYPAP always allocates two images at initialization time, even though many ker-
nels do only use one. The next_image (row, col) macro allows to access the second image.
The transpose kernel is a simple example to illustrate how to use two images and swap them
between iterations:

1 unsigned transpose_compute_seq (unsigned nb_iter)
2 {
3 for (unsigned it = 1; it <= nb_iter; it++) {
4

5 for (int i = 0; i < DIM; i++)
6 for (int j = 0; j < DIM; j++)
7 next_img (i, j) = cur_img (j, i);
8

9 swap_images ();
10 }
11

12 return 0;
13 }

Note that the swap_image is not a costly operation: it only swaps the value of two pointers.
When parallelizing such a kernel, make sure the swap_image() call is performed only once per
iteration!

For a more general discussion about kernels managing their own data structures, please refer
to Section 6.2.

2.10 Tiling

Parallelization of many kernels relies on a tiling approach, where data is divided into rectangular
tiles that can be assigned to different computing units.

2.10.1 Tile parametrization

The tiled variant of the spin kernel shows how to divide computations using tiles in a straigh-
forward manner (Figure 4, page 11).

In addition to the DIM variable which contains the image dimension, EASYPAP provides a
couple of global variables to ease the implementation of tiling:

• TILE_W and TILE_H store the dimensions (width and height) of tiles. Consequently, each
tile contains TILE_W × TILE_H pixels.

• NB_TILES_X and NB_TILES_Y indicate the number of tiles along the x and y dimensions.
Thus, the image can be seen as grid of NB_TILES_X × NB_TILES_Y tiles.

Dimensions of tiles can be set on the command line using the --tile-width (or -tw) and
--tile-height (or -th) options:
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1 // Tile computation
2 static void my_tile (int x, int y, int width, int height)
3 {
4 for (int i = y; i < y + height; i++)
5 for (int j = x; j < x + width; j++)
6 cur_img (i, j) = compute_color (i, j);
7 }
8

9 ///////////////////////////// Simple tiled version (seq)
10 // Suggested cmdline:
11 // ./run --kernel spin --variant tiled --tile-width 64 --tile-height 32
12 //
13 unsigned spin_compute_tiled (unsigned nb_iter)
14 {
15 for (unsigned it = 1; it <= nb_iter; it++) {
16

17 for (int y = 0; y < DIM; y += TILE_H)
18 for (int x = 0; x < DIM; x += TILE_W)
19 my_tile (x, y, TILE_W, TILE_H);
20

21 rotate ();
22 }
23

24 return 0;
25 }

Figure 4: Example of a tiled computation

./run --kernel spin --variant tiled --tile-width 64 --tile-height 32

To define square tiles, one can use the --tile-size shortcut:

./run --kernel spin --variant tiled --tile-size 32

If no tile dimension is specified, then tiles are defined by default as squares of 32× 32 pixels. If
only one dimension is specified (e.g. width), then tiles are defined as squares using the given value
for each dimension. Variables NB_TILES_X and NB_TILES_Y are deduced from both image and
tiles dimensions. For instance, NB_TILES_X is obtained by calculating DIM

TILE_W .

2.10.2 Tile variants

In many cases, programmers want to experiment with multiple implementations of the tiling func-
tion, to explore different optimization strategies, or to enforce explicit vectorization through the
use of intrinsics5.

EASYPAP allows to define multiple tiling variants for a given kernel, and provide the do_
tile generic wrapper to invoke the appropriate variant at execution time. Figure 5 illustrates
how multiple tiling variants can be defined for the spin kernel. Note that the do_tile wrapper
requires an additional parameter to indicate which thread is computing the tile for monitoring

5See for instance the Intel® Intrinsics Guide
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purposes (see Section 3).

1 // Tile computation
2 int spin_do_tile_default (int x, int y, int width, int height);
3 int spin_do_tile_sse (int x, int y, int width, int height);
4 int spin_do_tile_avx (int x, int y, int width, int height);
5

6 unsigned spin_compute_tiled (unsigned nb_iter)
7 {
8 for (unsigned it = 1; it <= nb_iter; it++) {
9

10 for (int y = 0; y < DIM; y += TILE_H)
11 for (int x = 0; x < DIM; x += TILE_W)
12 do_tile (x, y, TILE_W, TILE_H, 0 /* thread id */);
13

14 rotate ();
15 }
16 return 0;
17 }

Figure 5: Example of multiple variants for the tiling function (cf kernel/c/spin.c)

The tiling variant can be specified on the command line using the --with-tile option:

./run --kernel spin --variant tiled --with-tile avx

You can tell EASYPAP your preferred tiling variants (in decreasing order of
priority) via the EASYPAP_TILEPREF environment variable. For instance:

export EASYPAP_TILEPREF="avx:sse:opt"

When no tiling variant is specified on the command line, EASYPAP tries to
select the most relevant implementation by scanning the EASYPAP_TILEPREF
variable, and falls back to the default one if no matching is found.

Tip

3 Monitoring

EASYPAP comes with powerful tools to help students understanding the behavior of their code,
in terms of both correctness and efficiency. These tools allow to visually check parameters such as
the number of threads, the tile dimensions or even the scheduling policy.

If you are using EASYPAP’s do_tile tile wrapper, your code is already instrumented and
ready to be monitored. Please go to Subsection 3.1!

In case you are not using the do_tile wrapper, you can still enable monitoring in your code
by just adding two function calls, respectively at the beginning/end of your tile computation
code. Figure 6 shows how to instrument the tiled OpenMP version of the spin kernel to enable
monitoring.
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1 // Tile inner computation
2 static void my_specific_tile (int x, int y, int width, int height, int thread_id)
3 {
4 monitoring_start_tile (thread_id);
5

6 for (int i = y; i < y + height; i++)
7 for (int j = x; j < x + width; j++)
8 cur_img (i, j) = compute_color (i, j);
9

10 monitoring_end_tile (x, y, width, height, thread_id);
11 }

Figure 6: Note the calls to monitoring_start_tile and monitoring_end_tile

3.1 Real-time monitoring

Once the code has been instrumented, real-time monitoring can simply be activated using the
--monitoring option. The following command line shows how to monitor the execution of the
mandel kernel.

./run --kernel mandel --variant omp --monitoring

Figure 7 (page 14) shows a snapshot taken during the parallel execution of the mandel kernel.
The monitoring mode introduces two additionnal windows on the right side of the main one:

Tiling window This windows reflects the way tiles have been assigned to threads at each itera-
tion. Each thread is assigned a different color6 which is consistent with the color assigned
to CPUs in the Activity Monitor window. By observing Figure 7, we can see that the image
has been divided in eight rows of eight tiles (64 tiles in total), and that these tiles have been
assigned to threads in contiguous blocks, in accordance to the static loop scheduling policy.

Note that the display mode used by the Tiling Window can
be toggled between normal and heatmap by pressing h .
In heatmap mode, the brightness of tiles displayed in the
Tiling Window reflects the duration of the corresponding
tasks: the brighter an area is, the more time-consuming
it is. Figure 8 shows a capture of the Tiling Window in
heatmap mode during the execution of a tiled sequential
version of mandel. We can neatly distinguish the shape of
the Mandelbrot set.

Figure 8: Heatmap mode

Activity Monitor window This window reports the real-time load of each CPU. This load is a
percentage representing the amount of time spent in computations over the duration of the
iteration. In constrat with system wide perfmeters, the activity monitor only reflects the

6This is true to some extent. When the number of threads exceeds the maximum number of predefined colors, the
color is computed using thread_number modulo MAX_COLORS.
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Figure 7: Snapshot of monitored execution of the mandel kernel. One can clearly observe that
the compute load is disbalanced between CPUs.

kernel behavior. For instance, the overhead of updating the main graphical window is ex-
cluded from the stats. At the bottom of the window, a history diagram shows the evolution
of cumulated idleness over time. In figure 7, one can clearly observe a load disbalance be-
tween CPUs, where CPU9, CPU10 and CPU11 are much busier than the others. The reason
comes from the fact that the image is statically divided into contiguous blocks of squared
tiles: this is unfortunate because the bottom black area of the image (i.e. pixels belonging to
the Mandelbrot set) involves much more computations than the other areas.

As for the main window, the contents of both monitoring windows is refreshed at the end of
each iteration.

3.2 Post-mortem trace analysis

Although the monitoring facilities can greatly help to detect and understand some flaws in the
execution of kernels, a real-time tool can not always capture some subtle properties such as a the
heterogeneity of tasks duration, the correct implementation of task dependencies, etc.

When a fine grain analysis is required, EASYPAP can record the events related to the execution
of tiles (i.e. start time, end time, tile coordinates, cpu) into a trace file. Section 3.2.1 explains how
to trigger trace generation, and Section 3.2.2 shows how to run the trace visualizer.
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3.2.1 Trace generation

Use the --trace option to enable events recording during the execution of a kernel. To avoid any
extra overhead which would spoil the trace, it is strongly recommended to use the tracing option
in conjunction with the --no-display mode. As a consequence, the number of iterations must
be bound using the --iterations option.

./run --kernel mandel --variant omp --trace --no-display --iterations 10

This kernel execution eventually creates a trace file named “ezv_trace_current.evt” un-
der the data/traces subdirectory. If the file already exists, it is backed up as ezv_trace_
previous.evt. As a consequence, the default behavior leads to only keep the last two traces in
data/traces.

[my-machine] ls data/traces
ezv_trace_current.evt ezv_trace_previous.evt

To keep more than two trace files simultaneously, rename the ezv_trace_current.evt file
between runs.

3.2.2 Visualizing traces

To visualize the more recently generated trace, simply run:

./view

The trace visualizer windows pops up as shown in Figure 9 on page 16. The window is subdi-
vided in two parts.

On the left side, a Gantt chart displays a range of iterations. By default, the first iteration is
displayed, but several command line options allow to specify a specific range7 Tiles computed by
the same CPU have the same color, and are displayed on the same timeline. When moving the
mouse over a task, a pop-up bubble displays the task duration (e.g. On Figure 9, the duration of
the selected pink task executed by CPU 8 is 892µs).

On the right side, the square represents a reduced view of the image. Whenever the x-axis
of the mouse intersects tasks in the Gantt chart, the corresponding tiles are highlighted on this
reduced image, helping to localize computations. As a consequence, starting on the left side of
the Gantt chart and moving smoothly the mouse towards the right side reveals the order in which
tiles have been computed.

Interacting through the keyboard/mouse can change the range of tasks displayed in the Gantt
chart, as detailed in Table 2 (Page 18).

You can toggle between this vertical mouse mode and an horizontal mode by pressing x . In
this latter mode, the y-axis of the mouse selects a particular CPU and displays the tiles computed
during the current period. This is illustrated in Figure 10 (Page 17).

Finally, pressing f enters (or leaves) the footprint mode, which is an extension of the horizontal
mode where all tiles corresponding to on-screen tasks are displayed. This typically allows to
observe the whole tile distribution during a given iteration.

7Use --iteration <i> to start with a specific iteration, --range <i> <j> to start with a range of iterations, or
--whole-trace to display all recorded iterations.
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Figure 9: Post-mortem visualization of the 10th iteration of the mandel OpenMP variant using a
static scheduling policy. Moving the mouse over a task in the Gantt diagram displays its duration
(bubble pop-up at top of window). Tasks intersecting the x-axis of the mouse cursor have their
corresponding tile highlighted on the right image thumbnail.

3.2.3 Thumbnails generation

As one can observe in Figure 9, a reduced view of the Mandelbrot set is displayed in the back-
ground of the left figure. By default, the background is black. To use a thumbnail reflecting you
kernel output at each iteration, these thumbnails must be generated during a preliminary execu-
tion, using the --thumbnails (or -tn for short).

./run --kernel mandel --variant omp --thumbnails --iterations 10

The thumbnails are small PNG files generated in the data/traces subdirectory. Once gener-
ated, they can be used by multiple subsequent trace visualisations (as long as the kernel stays the
same, obviously).
Trick: Since the thumbnails should be identical with respect to the variant used, the fastest one
should be preferred.

As a recap, Figure 11 (page 17) shows a typical sequence of commands to analyze the impact of
the OpenMP loop scheduling policy on the execution of the mandel kernel. Actually, this example
represents a case for a more convenient feature: the ability to display two traces simultaneously!
This is precisely the topic of the next Section.

3.2.4 Trace comparison

To display two traces at the same time, run view with two filenames as arguments, e.g.:

./view data/traces/ezv_trace_1.evt data/traces/ezv_trace_2.evt
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Figure 10: In horizontal mouse mode, it is possible to observe the set of tiles computed by a
selected CPU. In this example, one can observe the spreading of tiles computed by CPU #4 during
four iterations.

# Dry run to first generate thumbnails
./run --kernel mandel --variant omp --thumbnails --iterations 10
# Then generate a first trace
OMP_SCHEDULE=static ./run --kernel mandel --variant omp --trace --iterations 10
# Observe the trace
./view
# Try a different schedule
OMP_SCHEDULE=dynamic ./run --kernel mandel --variant omp --trace --iterations 10
# Observe
./view

Figure 11: Typical workflow when using execution traces.

That said, in many cases we just want to compare the last two traces. In such cases, the
--compare option (or -c for short) is a convenient shortcut:

./view -c

It is equivalent to

./view data/traces/ezv_trace_current.evt \
data/traces/ezv_trace_previous.evt

Figure 12 (page 19) shows an example where two traces are displayed simultaneously. In this
specific example, one can observe the different task scheduling strategies used by respectively the
gcc9 and clang8 OpenMP runtime systems.

You can navigate over the traces using the same keyboard/mouse control as seen previously
(Table 2). In addition, a new feature is available when comparing traces: you can press a to
toggle “auto-align” mode. In auto-align mode, the beginning of each iteration is synchronized in
both traces, by adding extra padding between iterations if necessary. This typically allows to

17



Key/Mouse control Action
Space toggle the “quick-nav” mode On/Off. In quick-nav mode, iterations

are always completely displayed. As a consequence, the and
keys directly shift the iteration range. When not in quick-nav mode,
zooming on specific parts of iterations can be performed, and the
and keys smoothly shift the bounds of the displayed time interval.
shift the displayed time range.

- + zoom/unzoom the displayed time range.
w reveal the whole trace.
x toggle between vertical (default) and horizontal mouse selection mode.
f enter/leave footprint mode, where all tiles corresponding to on-screen

tasks are displayed.
t toggle tracking mode.

Mouse scroll shift the displayed range.
Mouse click-and-drag select a specific time range.

z zoom to current selection.
s take a screenshot.

Table 2: Navigating inside traces.

conveniently compare the same iteration range in both traces. In Figure 12, iterations 12 and 13
are displayed, and it is easy to observe that the bottom trace results from a more efficient execution
of the kernel. Green areas materialize the amount of time saved per iteration by the faster run.

3.2.5 Comparison between different granularities

When comparing two traces corresponding to using different tile sizes (that is, different granular-
ities), it is often useful to compare the time spent to compute a given region on both sides. On one
hand, a large granularity may decrease the overhead incurred by the underlying management of
inter-tile parallelism (e.g. task creations). On the other hand, with kernels where not all tiles are
systematically calculated (e.g. lazy evaluation), a small tile granularity will probably help to save
computations at the frontiers between inactive and active areas.

To this end, the trace visualizer offers a tracking mode in which the user can select a task and
see which tasks, in the other trace, have worked on the same region (see Figure 13, page 20). Most
importantly, the cumulated duration of these tasks is displayed and can be directly compared with
the duration of the selected task. To toggle this mode, simply press t .

4 Distributed Computing with MPI

EASYPAP allows the implementation of distributed computations using the MPI high perfor-
mance communication library. The integration of MPI into EASYPAP was done in such a way
that programmers can focus on the design of their kernels without worrying (too much) about
low-level details related to handling SDL events or coping with the distribution of the initial con-
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Figure 12: Comparing two traces with auto-align enabled.

tent of data.

4.1 A simple example

Let us go back to our spin kernel. Its parallelization is trivial due to the fact that the computation
of each pixel is totally independent from the others.

The mpi variant of spin is displayed in Figure 14 (page 21). In this implementation, the
work is evenly distributed across MPI processes by dividing the image in horizontal stripes of
equal thickness. For each process, the computation of the bounds of its tile are computed once
in the spin_init_mpi function which is called automatically during the initialization phase of
EASYPAP (see Section 6.1.1 for more details).

The spin_compute_mpi kernel function is remarquably simple: upon each invocation of the
kernel, each process performs a burst of iterations consisting in computing its horizontal stripe
(calling do_tile, Figure 14, line 27). Then, the process participates to a collective MPI communi-
cation to regroup all the contributions on the master node (MPI_Gather, lines 32–33).

4.2 Running MPI variants

MPI implementations usually come with a mpirun command which takes care of properly launch-
ing the requested number of processes, possibly using resource allocation managers in some en-
vironments.

To launch MPI variants of kernels, the EASYPAP run script calls mpirun with the parameters
supplied using the --mpirun (or -mpi) option. As an illustration, here is how to run the mpi
variant of spin using 2 processes:

./run --kernel spin --variant mpi --mpirun "-np 2"
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Figure 13: Comparing two traces with “tracking mode” enabled. When selecting a coarse grain
task in one trace, the corresponding fine grain tasks are highlighted (in white color) in the other
trace, and the accumulated execution time is indicated.

To prevent users from forgetting the --mpirun option when using MPI variants, a call to
easypap_check_mpi () can be done in the variant-specific initialization function. This is illus-
trated in Figure 14 at line 8.

4.3 Debug mode

By default, only the windows (i.e. main window plus, optionnally, monitoring windows) associ-
ated to the master process are showing up. The other processes are running “in the background”
but are still capable of handling the fact that esc was pressed in the master window, for instance.

The debug mode of MPI can be activated by including the M character in the --debug flags:

./run --kernel spin --variant mpi --mpirun "-np 2" --debug M

This forces the display of all processes’ windows, helping to track down work distribution
bugs by inspecting “which process computes what pixel.”, as illustrated in Figure 15.

4.4 Traces

Trace generation of MPI variants will lead to the creation of one separate trace file per process.
The command line options are no different from the non-MPI variants:

./run --kernel spin --variant mpi --mpirun "-np 2" --no-display --trace

In this example, two processes were launched, leading to the generation of two trace files:
data/traces/ezv_trace_current.0.evt and data/traces/ezv_trace_current.1.evt.
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1 static int mpi_y = -1;
2 static int mpi_h = -1;
3 static int mpi_rank = -1;
4 static int mpi_size = -1;
5

6 void spin_init_mpi (void)
7 {
8 easypap_check_mpi (); // check if MPI was correctly configured
9

10 MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);
11 MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
12

13 mpi_y = mpi_rank * (DIM / mpi_size); // first line to start with
14 mpi_h = (DIM / mpi_size); // number of lines to compute
15 }
16

17 unsigned spin_compute_mpi (unsigned nb_iter)
18 {
19 for (unsigned it = 1; it <= nb_iter; it++) {
20

21 do_tile (0, mpi_y, DIM, mpi_h, 0);
22 rotate ();
23 }
24

25 MPI_Gather ((mpi_rank == 0 ? MPI_IN_PLACE : image + mpi_y * DIM), mpi_h * DIM,
26 MPI_INT, image, mpi_h * DIM, MPI_INT, 0, MPI_COMM_WORLD);
27

28 return 0;
29 }

Figure 14: Simple MPI variant of the spin kernel. Calls to the MPI library are highlighted.

They can be visualized side by side using the compare capabilities of the trace viewer:

./view data/traces/ezv_trace_current.0.evt \
data/traces/ezv_trace_current.1.evt

5 Exploiting GPU accelerators

5.1 OpenCL

EASYPAP allows to implement and run OpenCL kernels as easily as regular C kernels. When
using the main8 GPU as a target, the image buffers used by EASYPAP are shared between OpenGL
and OpenCL so that the results of OpenCL computations are rendered in place and require no data
transfer between the host memory and the GPU.

8That is, the GPU in charge of the screen display
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Figure 15: MPI+OpenMP variant of spin running in debug mode. Two MPI processes were
launched, each containing 6 threads.

5.2 Checking the OpenCL configuration

Many OpenCL implementations rely on an OpenCL Installable Client Driver (ICD). This mecha-
nism allows OpenCL implementations from multiple vendors to coexist on a system.

To display the list of devices detected by OpenCL, just run:

[my-machine] ./run --show-devices
1 OpenCL platforms detected
Platform 0: Apple (Apple)
--- Device 0 : CPU [Intel(R) Core(TM) i9-8950HK CPU @ 2.90GHz]
+++ Device 1 : GPU [Intel(R) UHD Graphics 630]
--- Device 2 : GPU [AMD Radeon Pro 560X Compute Engine]
Note: OpenGL renderer uses [AMD Radeon Pro 560X OpenGL Engine]

Note which device is selected by default (line beginning with +++). To be able to run EASYPAP
interactively, please make sure that the selected device corresponds to renderer driver of OpenGL
(which is not the case in our example). In performance mode (i.e. no display), you may choose
any OpenCL device as a target.

To specify a particular platform or device, please set the PLATFORM and/or DEVICE shell vari-
ables. For instance:

[my-machine] DEVICE=2 ./run --show-devices
1 OpenCL platforms detected
Platform 0: Apple (Apple)
--- Device 0 : CPU [Intel(R) Core(TM) i9-8950HK CPU @ 2.90GHz]
--- Device 1 : GPU [Intel(R) UHD Graphics 630]
+++ Device 2 : GPU [AMD Radeon Pro 560X Compute Engine]
Note: OpenGL renderer uses [AMD Radeon Pro 560X OpenGL Engine]

5.2.1 Writting and executing 2D kernels

OpenCL kernels are located in the kernel/ocl/ subdirectory.
To Appear Soon
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5.3 NVIDIA Compute Unified Device architecture

To Appear Soon

6 Advanced topics

6.1 Initialization hooks

Before the execution of a kernel starts, a number of user prelude functions can be called by EASY-
PAP in order to initialize/allocate data structures, perform initial computations the matrices, or
even trigger page-based first-touch allocations.

1 [my-machine] ./run -d i -k hook_funcs
2 Using kernel [hook_funcs], variant [seq]
3 Init phase 1 : SDL initialized (DIM = 1024)
4 Init phase 2 : [OpenCl init not required]
5 Hello from the initialization function! Image size is 1024x1024
6 Init phase 3 : init() hook called
7 Init phase 4 : images allocated
8 Init phase 5 : [first-touch policy not activated]
9 Init phase 6 : kernel-specific draw() hook called

10 Init phase 7 : [no OpenCL data transfer involved]

Figure 16: Detailed typical EASYPAP initialization sequence.

File kernel/c/hook_funcs.c demonstrates how the user can define several functions that
will be called at specific steps during the initilizaion process. Figure 16 shows the output obtained
when running the hook_funcs kernel with the --debug i flag set. Seven distinct phases are
involved:

1. The SDL library is initialized and the image size (i.e. DIM) is calculated ;

2. If required, the OpenCL library is initialized ;

3. If defined, the init kernel-specific function is called (see Section 6.1.1) ;

4. Images are allocated using the mmap system call ;

5. If defined, the first-touch kernel-specific function is called (see Section 6.1.2) ;

6. If defined, the draw kernels-specific function is called (see Section 6.1.3) ;

7. Data are transferred to the GPU if needed.

Note: For all kernel-specific functions (e.g. init), EASYPAP first looks for the variant-specific one
(e.g. <kernel>_init_<variant>) and, if not found, looks for the general one (e.g. <kernel>_
init).
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6.1.1 Initialization

The user-defined init function is called after the size (i.e. DIM) is known. It is typically the place
were worker threads can be spawned, in case a specific task-based scheduler9 is desired for instance.
It is also the place where various variables can be initialized. As an illustration, the init function
defined in kernels/c/mandel.c is displayed in Figure 17.

1 static float leftX = -0.2395;
2 static float rightX = -0.2275;
3 static float topY = .660;
4 static float bottomY = .648;
5

6 static float xstep;
7 static float ystep;
8

9 void mandel_init (void)
10 {
11 xstep = (rightX - leftX) / DIM;
12 ystep = (topY - bottomY) / DIM;
13 }

Figure 17: Initialization of global variables using the init hook function.

Note that, at the time the init function is called (see Figure 16, line 6), images are not yet
allocated. If accessing cur_img or next_img is needed, the code should be placed in the drawing
hook (Section 6.1.3).

6.1.2 First-touch data allocation

Because most parallel nodes have a non-uniform memory access (i.e. NUMA) architecture, it is often
desirable to control the allocation of data structures at the page level. On Linux, for instance, the
numactl utility can help to run EASYPAP under a specific memory allocation policy.

In addition, EASYPAP provides an optional first touch feature: when the --first-touch
option appears on the command line, a “first touch hook” is called (if defined). Since the function is
called before any access has been performed on the images (see Figure 16, line 6), it is possible to
force physical allocation near specific cores from within a parallel region.

Figure 18 illustrates how the omp variant of the transpose kernel distributes data allocations
evenly among cores.

6.1.3 Drawing hook

The ability to define a draw function has already been presented in Section 2.8.
Let us just observe that, since this hook function receives a command line string as a param-

eter, it can be used for other purposes too. For instance, in the pixelize kernel, it is used to
parametrize the size of squares on the pixelized image, as shown in Figure 19.

9Using worker threads is illustrated by the sched variant of the max kernel. Check max_init_sched and max_
finalize_sched functions for more details.
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1 void transpose_ft_omp (void)
2 {
3 #pragma omp parallel for
4 for (int i = 0; i < DIM; i++)
5 for (int j = 0; j < DIM; j += 512)
6 next_img (i, j) = cur_img (i, j) = 0;
7 }

Figure 18: First-touch data allocation in an OpenMP kernel using static scheduling.

1 void pixelize_draw (char *param)
2 {
3 unsigned n;
4

5 if (param != NULL) {
6 n = atoi (param);
7 if (n > 0)
8 PIX_BLOC = n;
9 }

10 }

Figure 19: Using the command line argument to parametrize the pixelize kernel.

6.2 Using your own data structures

For convenience, EASYPAP provides two predefined images to work with – cur_img and next_
img – which are DIM×DIM arrays of unsigned int elements.

However, there are many 2D kernels which require to allocate more complex data structures
(e.g. Adaptive mesh refinement codes, sparse matrices, etc.), or 2D matrices of a different type.

Implementing the Game of Life, for instance, is probably more cache-effective if the cells are
stored using a few bits rather than using an unsigned int per cell.

The lifec kernel is such an implementation of Game of Life. It uses a memory footprint of one
byte per cell. Two matrices, cur_table and next_table, are allocated (resp. destroyed) in the
init (resp. finalize) hook function, as shown in Figure 20.

The side effect of using arbitrary data structures is that the cur_img must be regularly up-
dated to refresh the display window. To avoid performing unnecessary updates, and even avoid-
ing all updates in case no display was requested (i.e. performance mode), EASYPAP calls a refresh_
img function whenever the display must be refreshed. Figure 21 (page 26) shows how the cur_
img image is updated in the lifec kernel.
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1 static char *restrict _table = NULL,
2 *restrict _alternate_table = NULL;
3

4 static inline char *table_cell (char *restrict i, int y, int x)
5 {
6 return i + y * DIM + x;
7 }
8

9 #define cur_table(y, x) (*table_cell (_table, (y), (x)))
10 #define next_table(y, x) (*table_cell (_alternate_table, (y), (x)))
11

12 void lifec_init (void)
13 {
14 _table = mmap (NULL, DIM * DIM * sizeof (char), PROT_READ | PROT_WRITE,
15 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
16 _alternate_table =
17 mmap (NULL, DIM * DIM * sizeof (char), PROT_READ | PROT_WRITE,
18 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
19 }
20

21 void lifec_finalize (void)
22 {
23 munmap (_table, DIM * DIM * sizeof (char));
24 munmap (_alternate_table, DIM * DIM * sizeof (char));
25 }

Figure 20: Allocating/freeing ad hoc data structures in the lifec kernel.

1 void lifec_refresh_img (void)
2 {
3 for (int i = 0; i < DIM; i++)
4 for (int j = 0; j < DIM; j++)
5 cur_img (i, j) = cur_table (i, j) * color;
6 }

Figure 21: Updating cur_img when using ad hoc data structures is performed via a refresh_
img function.
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7 Plotting performance graphs with EASYPLOT

7.1 Introduction

Each time EASYPAP is invoked in performance mode (i.e., with the --no-display flag), it re-
ports the completion time as well as all execution and configuration parameters in a Comma Sep-
arated Value (CSV) file. The collected data can then be exploited by EASYPLOT, a plotting facility
based on the Seaborn10 data visualization library and the pandas 11 data analysis toolkit. One
can easily filter and select appropriate data from the performance file. Other options are available
to specify figure-level or axes-level parameters. A key feature of EASYPLOT is that speedup ratios
and legends are automatically generated from the data. Once data have been filtered, constant
parameters are put aside, and the names of plot-lines are set using the remaining parameters (see
Fig. 23b). This guarantees that experiments conducted in different conditions will not silently be
incorporated in the same graph.

7.2 Production of experimental data

As soon as we want to observe the influence of few parameters, it is preferable to explore them
using scripts to systematically generate data. Several experimentation scripts are available (see
plots/run-xp-*.py files). As an illustration, Figure 22 presents a simple script which auto-
mates the execution of the OpenMP tiled variant of the Mandelbrot kernel for several image sizes,
tile sizes, and scheduling policies. Note that the data produced by this script is placed in the
mandel-data.csv file.

7.3 Production of graphs

The Python script EASYPLOT generates line plots, scatter plots, and heat maps from a CSV file
produced by EASYPAP. While execution time can naturally be used for the y-axis, the default per-
formance measure is speedup. Additionally, it is possible to utilize parallel efficiency, throughput
in pixels per second, or attributes obtained via performance counter measurements.

Moreover, users have the flexibility to define new attributes by adapting the EASYPLOT script.
As an example, the script plot-freq-stall.py employs hardware performance counter values
to compute the mean frequency (cpu-frequency) and the time wasted in stalls for each run.

In the figure 23 we show how to build a heatmap and a speedup graph with EASYPLOT.

7.3.1 Data selection

The script’s options are derived from attribute names in EASYPAP.
Example:

./plots/easyplot.py --kernel mandel --size 1024 --tileh 4 8 16 \
--input mandel-data.csv --output mandel.pdf

Data selection’s options:

10https://seaborn.pydata.org
11https://pandas.pydata.org
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#!/usr/bin/env python3
from expTools import *

easypapOptions = {
"--output-file": ["mandel-data.csv"]
"--kernel": ["mandel"],
"--variant": ["omp_tiled"],
"--iterations": [20],
"--size": [1024,2048],
"--tile-height": [2**i for i in range(0, 5)],
"--tile-width": [2**i for i in range(3,11)]

}

ompICV = { # OMP Internal Control Variable
"OMP_SCHEDULE": ["dynamic","static,1"],
"OMP_NUM_THREADS": [46],
"OMP_PLACES":["cores"]

}

execute('./easypap', ompICV, easypapOptions, nbruns=5)

Figure 22: Experiments automation script to investigate the role of tile size.

--attribute values Selects rows that match with any provided value for the specified attribute.

--delete attributes Eliminates complete columns identified by their attribute from the dataset.

--input, -if filename Specifies the path of the input file, with the default being easypap/data/perf.csv.

--output, -of filename Specifies the path of the ouput file, with the default being plot.pdf.
The available file formats include eps, jpeg, jpg, pdf, pgf, png, ps, raw, rgba, svg, svgz, tif
and tiff.

Utilize the --verbose option to receive feedback regarding data selection.

Tip

7.3.2 Data presentation

Options for data presentation directly sourced from Seaborn / Matplotlib.
Example :

./plots/easyplot.py --plottype catplot -y time -yscale log -- row=size col=schedule

--plottype kind Seaborn’s lineplot, catplot and heatmap are available.
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(a) Heat map revealing the influence of tile geometry on performance. Numbers inside tiles
denote the average duration time (in ms). This heat map was obtained using the following
command:
easyplot.py --input mandel.csv --plottype heatmap \

-y time -heatx tilew -heaty tileh -- col=schedule row=size
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(b) Speedup plots of mandel kernel. The speedup ratios were computed against the best
sequential execution time (2590 ms for 1024 × 1024 and 9856 ms for 2048 × 2048). This graph
was obtained using the following command:
easyplot.py --input mandel-speedup.csv -- col=size legend_out=false sharey=row

Figure 23: Some plots and their associated command line.
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-y measure-attributes Specifies the measure-attributes to be displayed on the y-axis.

-y2 measure-attributes Attributes related to the second y-axis, displayed on the right side of the
graph.

-x non-measure-attribute For the x-axis, you can specify a non-measure, ie. categorical, attributes
(eg. tiles size, images dimension, variants name,...). The default is threads.

--heatx, --heaty non-measure-attribute Indeed, heat maps need two axis.

--xscale, --yscale, --yscale2 scale For setting axis scales. By default linear scales are
used, however log and log2 scales may be useful.

Customization options for Catplot and Lineplot graphs align with the corresponding argu-
ments of Seaborn’s catplot and, in the case of Lineplot, FacetGrid methods. These arguments are
specified in the form of an arg=value assignment. For instance, to create a multi-plot grid where
graphics share the same size on each row and the same variant on each column, simply define the
row=size col=variant variables. It’s important to note that only boolean, float, integer, and
string parameters can be set via the command line. Please note that it might be necessary to use
-- to separate a list of arguments placed before another option. For example: --size 512 1024
-- row=none.

FacetGrid’s and catplot’s arguments are detailed in Seaborn’s documentation at the following
links: https://seaborn.pydata.org/generated/seaborn.facetgrid.html and https:
//seaborn.pydata.org/generated/seaborn.catplot.html. Among these arguments,
the following are common main arguments:

row, col Categorical variables determining the faceting of the grid.

sharex, sharey Controls sharing of properties among x (sharex) or y (sharey) axes:

• True or all: x- or y-axis will be shared among all subplots.

• False or none: each subplot x- or y-axis will be independent.

• row: each subplot row will share an x- or y-axis.

• col: each subplot column will share an x- or y-axis.

height Height (in inches) of each facet.

aspect Aspect ratio of each facet, where aspect * height gives the width of each facet in inches.

legend_out If True, the figure size extends, and the legend is drawn outside the plot on the center
right.

Additionally, Catplot introduces the following arguments:

kindstr The type of plot to draw, corresponding to the name of a categorical axes-level plotting
function. Options include: "strip," "swarm," "box," "violin," "boxen," "point," "bar," or "count."

native_scale When True, numeric or datetime values on the categorical axis maintain their origi-
nal scaling rather than being converted to fixed indices.
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7.3.3 About speedup computations

As previously mentioned, EASYPLOT automatically calculates speedup ratios, which are derived
from reference durations representing minimal times observed during sequential executions with
a thread count set to 1 (using OMP_NUM_THREADS=1). However, in some cases, optimal sequential
performance is achieved through a vectorized version, prompting the need to opt for a purely
sequential version:

--RefTimeVariants, --RefTimeTiling functions Choose specific rows for speedup ratio
calculations.

--noRefTime Suppress the display of the duration used in the legend for cosmetic reasons.

7.3.4 Cosmetic options

--noSort Follows the data order to process the graphics (i.e., does not sort data based on y-axis
values).

--fontScale float Scales the font of the title and the legend.

--adjustTop float Adjusts the space between the title and the graphs.

7.3.5 Plotting multiple attributes

The |-c| option in EASYPAP facilitates the collection of measurements from hardware counters.
The script plot-fer-stall.py generates graphs using these measurements, defining attributes
frequency (average core frequency) and stall_ratio. This ratio indicates the sum of stall
cycles across all cores divided by the total number of execution cycles. Two examples of these
graphs are illustrated in 24.

8 Installing EASYPAP

EASYPAP runs on both Linux and Mac OS X systems.

8.1 Prerequisites

EASYPAP is written in C. and uses OpenMP/Pthreads to exploit multicore machines.
On Mac OS X systems, make sure that the C compiler you are using is understanding OpenMP

directives (the default Apple clang compiler does not support OpenMP).

8.2 Required packages

8.2.1 SDL2

EASYPAP relies on the SDL 2.0 library for fast 2D graphics display and requires the following
packages:

• libsdl2-dev (Linux) / libsdl2 (Mac OS X)
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(a) Speed up and average core frequency:
./plots/plot-freq-stall.py -if mandel.csv --size 2048 -y2 frequency\

--noRefTime -wt mipp default --schedule dynamic -- aspect=2.8
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(b) Execution times and stall ratios:
./plots/plot-freq-stall.py -if mandel.csv --size 2048 -y2 stall_ratio\

--noRefTime -wt mipp default --schedule dynamic -- aspect=2.8

Figure 24: Some plots and their associated command line.
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• libsdl2-image-dev (Linux) / libsdl2_image (Mac OS X)

• libsdl2-ttf-dev (Linux) / libsdl2_ttf (Mac OS X)

8.2.2 Hwloc

EASYPAP relies on the Portable Hardware Locality (hwloc) library to discover the underlying
hardware topology and place threads accordingly. Please make sure the following package is
installed:

• libhwloc-dev (Linux) / hwloc (Mac OS X)

8.2.3 Lex

EASYPAP relies on the LEX lexical analyzer generator to parse Run-Length Encoded (RLE) files,
typically files describing Game of Life configurations. Please make sure the following package is
installed:

• flex (Linux) / — (lex is included in Mac OS X Developer Tools)

8.3 Optional packages

8.3.1 FxT (recommended)

EASYPAP relies on the Fast User Tracing utility to generate and display execution traces. This
package is required if ENABLE_TRACE set in the Makefile (see Section 8.5, page 35). If needed,
please install the following package:

• libfxt-dev (Linux when available) / — (manual installation required on Mac OS X and
some Linux distributions)

On Mac OS X systems, or on Linux distributions that do not provide a libfxt package, please
download the latest version of FxT sources from Savannah, and follow the instructions of the
README file:

./configure
make
sudo make install

8.3.2 OpenCL (recommended)

OpenCL is a portable programming environment to exploit hardware accelerators. To use OpenCL
to generate kernels, please set ENABLE_OPENCL in the Makefile (see Section 8.5, page 35), and in-
stall at least the following package:

• ocl-icd-opencl-dev (Linux) / — (OpenCL is included in Mac OS X Developer Tools)

Depending on your hardware, you may need to install additional packages (e.g. AMD OpenCL
drivers).
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8.3.3 CUDA (Linux only)

If your machine is equipped with an NVIDIA graphical processing unit (GPU), you might want
to manage your hardware with CUDA. In this case, set ENABLE_CUDA in the Makefile (and make
sure that ENABLE_OPENCL is unset), and install the following package:

• nvidia-cuda-toolkit (Linux) / — (NVIDIA no longer supports CUDA on Mac OS X)

8.3.4 MPI

To build an MPI-ready version of EASYPAP (i.e. with ENABLE_MPI set in the Makefile), you need
to install an MPI development environment. Although EASYPAP could probably work with any
available MPI implementation, it has only been tested with the Open MPI implementation. So
please install the following package:

• libopenmpi-dev (Linux) / openmpi (Mac OS X)

8.3.5 OpenSSL

To use sha256 encryption methods to signing computation outputs, please make sure ENABLE_
SHA is defined in the Makefile and install the following package:

• libssl-dev (Linux) / openssl3 (Mac OS X)

8.3.6 MIPP

The MIPP software is provided as a git submodule of the EASYPAP project. To install MIPP,
simply type:

git submodule update --init

To develop and run MIPP kernels, you’ll also have to set the ENABLE_MIPP flag in the Makefile
(see Section 8.5, page 35).

8.3.7 PAPI (Linux only)

EASYPAP can collect hardware performance counters (using the --counters command line op-
tion) using the PAPI Library (Performance Application Programming Interface). To use this fea-
ture, you need to install the following package:

• libpapi-dev (Linux) / — (PAPI is not available on Mac OS X)

8.4 Troubleshooting
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The EASYPAP Makefile uses the pkg-config utility to collect compile and
link flags for each of the aforementioned packages. Please make sure that your
PKG_CONFIG_PATH variable is properly set to find the config files associated to
these packages. You may typically run the following command and check if the
result contains the -I<includedir> paths corresponding to your local setup:

pkg-config --cflags sdl2 fxt hwloc

Warning

8.5 Customizing EASYPAP

Before compiling EASYPAP, you may check the Configuration Section at the top of the Makefile
(see Figure 25) to enable/disable some functionalities.

1 ########## Config Section ##########
2

3 ENABLE_SDL = 1
4 ENABLE_MONITORING = 1
5 ENABLE_VECTO = 1
6 ENABLE_TRACE = 1
7 ENABLE_MPI = 1
8 ENABLE_SHA = 1
9 ENABLE_OPENCL = 1

10 #ENABLE_CUDA = 1
11 #ENABLE_MIPP = 1
12 #ENABLE_PAPI = 1
13

14 ####################################

Figure 25: The config Section of the Makefile allows to easily disable some functionalities.

ENABLE_SDL Although EASYPAP offers many graphical functionalities which directly depends
on a number of SDL package (see Section 8.2), it is possible to compile EASYPAP without
SDL by disabling this flag (i.e. commenting out line starting with « ENABLE_SDL » in the
Makefile, see Figure 25, line 3). This may allow to remotely run EASYPAP applications on
machines where SDL is not installed, so as to collect performance number or even execution
traces.

ENABLE_MONITORING To collect precise performance numbers and compute CPU activity peri-
ods, the code of EASYPAP is instrumented with conditional “gettimeofday” calls. Since
the instrumentation was carefully done to minimize execution overhead, we advise to keep
monitoring always enabled.
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ENABLE_VECTO Some kernel variants are using Intrinsics macros to generate vectorized code. In
principle, EASYPAP only uses vector instructions supported by the underlying processor.
Should you encounter problems coming from improper vectorization settings, disable this
flag.

ENABLE_TRACE EASYPAP currently uses the libfxt fast tracing library to generate execution
trace files. If this library is not installed on your machine, you should disable this flag. The
installation of the libfxt package is obviously the preferred option.

ENABLE_MPI This flag should be set if you want to use the Open MPI communication library.

ENABLE_SHA EASYPAP can generate SHA256 signatures of the computation output at any it-
eration. This allows to check the correctness of a given implementation by comparing the
obtained signature with the one obtained using a reference implementation. Enable this flag
to use such a feature.

ENABLE_OPENCL Enable this flag to use the OpenCL programming environment to exploit hard-
ware accelerators, including GPUs.

ENABLE_CUDA Enable this flag to use the NVIDIA CUDA programming toolkit to exploit NVIDIA
GPUs. CUDA kernels must be placed into the kernel/cuda subdirectory.

ENABLE_MIPP MIPP (MyIntrinsics++) is a portable and Open-source C++ wrapper for vector
intrinsic functions (SIMD). It can be easily fetched as a git submodule of your EASYPAP
repository. Enable this flag to allow kernels in kernel/mipp/ to be included at compile
time.

ENABLE_PAPI EASYPAP is able to collect hardware performance counters when the PAPI Li-
brary (Performance Application Programming Interface) is installed on your system. If not,
you should disable this flag.
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Index of options

--arg, 9

--counters, 34

--debug, 20

--first-touch, 24

--iterations, 8

--kernel, 5

--load-image, 9

--monitoring, 13
--mpirun, 19

--no-display, 8

--pause, 9

--refresh-rate, 7

--show-devices, 22
--size, 6

--thumbnails, 16
--tile-height, 10
--tile-size, 11
--tile-width, 10
--trace, 15

--variant, 5

--with-tile, 12

37


	Before you start
	Compiling EasyPAP
	Enabling bash completion (optional)

	Running EasyPAP
	Our first kernel
	Changing the size of images
	Implementing multiple variants
	Interactive mode
	Setting the refresh rate
	Performance mode
	Loading images
	Drawing images
	Stencil codes
	Tiling
	Tile parametrization
	Tile variants


	Monitoring
	Real-time monitoring
	Post-mortem trace analysis
	Trace generation
	Visualizing traces
	Thumbnails generation
	Trace comparison
	Comparison between different granularities


	Distributed Computing with MPI
	A simple example
	Running MPI variants
	Debug mode
	Traces

	Exploiting GPU accelerators
	OpenCL
	Checking the OpenCL configuration
	Writting and executing 2D kernels

	NVIDIA Compute Unified Device architecture

	Advanced topics
	Initialization hooks
	Initialization
	First-touch data allocation
	Drawing hook

	Using your own data structures

	Plotting performance graphs with EasyPlot
	Introduction
	Production of experimental data
	Production of graphs
	Data selection
	Data presentation
	About speedup computations
	Cosmetic options
	Plotting multiple attributes


	Installing EasyPAP
	Prerequisites
	Required packages
	SDL2
	Hwloc
	Lex

	Optional packages
	FxT (recommended)
	OpenCL (recommended)
	CUDA (Linux only)
	MPI
	OpenSSL
	MIPP
	PAPI (Linux only)

	Troubleshooting
	Customizing EasyPAP

	Index of options

